Перевод: со всех языков на русский

с русского на все языки

объемный расход воды

  • 1 volumetric water discharge

    Большой англо-русский и русско-английский словарь > volumetric water discharge

  • 2 water discharge

    объемный расход воды

    Англо-русский геоэкологический словарь > water discharge

  • 3 water discharge

    1. объемный расход воды
    2. выпуск воды

     

    выпуск воды

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    объемный расход воды
    Объем воды, протекающий через живое сечение потока в единицу времени.
    [ ГОСТ 19179-73]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > water discharge

  • 4 Durchfluss

    1. объемный расход воды

     

    объемный расход воды
    Объем воды, протекающий через живое сечение потока в единицу времени.
    [ ГОСТ 19179-73]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Durchfluss

  • 5 débit

    1. пилопродукция
    2. объемный расход воды

     

    объемный расход воды
    Объем воды, протекающий через живое сечение потока в единицу времени.
    [ ГОСТ 19179-73]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    пилопродукция
    Продукция из древесины, полученная в результате продольного деления бревен и продольного и поперечного деления полученных частей.
    [ ГОСТ 18288-87

    Тематики

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > débit

  • 6 volumetric water discharge

    Англо-русский словарь нефтегазовой промышленности > volumetric water discharge

  • 7 volume flow

    English-Russian big polytechnic dictionary > volume flow

  • 8 flowmeter

    1. расходомер жидкости (газа)
    2. расходомер (в медицине)
    3. расходомер
    4. гидрологический расходомер

     

    гидрологический расходомер
    Гидротехническое сооружение для измерения расходов воды в открытых водных потоках по устойчивой однозначной зависимости расхода воды от напора над сооружением.
    [ ГОСТ 19179-73]

    Тематики

    Обобщающие термины

    EN

     

    расходомер
    Прибор для измерения расхода газов, жидкостей и сыпучих материалов
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    EN

    DE

    FR

     

    расходомер
    Устройство, которое показывает объемный расход определенного газа или газовой смеси
    [ ГОСТ Р 52423-2005]

    Тематики

    • ингаляц. анестезия, искусств. вентиляц. легких

    EN

    DE

    FR

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > flowmeter

  • 9 rate

    норма; скорость, темп; интенсивность; процент; коэффициент; пропорция; степень; разряд; сорт; производительность; расход; исчислять; оценивать; классифицировать; устанавливать категорию rate - of application интенсивность подачи (огнетушащего вещества) rate - of combustion скорость или интенсивность горения rate - of detonation скорость детонации (распространения взрыва) rate - of evaporation скорость или интенсивность испарения; паро-производительность rate - of fire интенсивность или режим горения rate - of fire development скорость {темп) развития пожара rate - of fire spread скорость распространения пожара rate - of fire travel скорость распространения пламени rate - of flow расход (жидкости, газа); скорость потока rate - of foam application интенсивность подачи пены; скорость накопления ленного слоя rate - of formation скорость образования rate - of heat flow скорость или интенсивность теплового потока rate - of heat loss скорость теплоотдачи (отвода тепла) rate - of insurance ставка (тариф) страховой премии rate - of reaction скорость или глубина реакции rate - of response быстрота срабатывания или реакции rate - of temperature rise скорость нарастания температуры rate - of volume flow массовый расход (жидкости, газа) rate ablation (ablative) - скорость абляции (уноса массы) rate alarm (arrival) - темп поступления сигналов тревоги (вызовов) rate autoconvective lapse - градиент автоконвекции rate burning - скорость или интенсивность горения rate chemical-reaction - скорость химической реакции rate combustion - скорость или интенсивность горения rate controlled-burning - регулируемая скорость горения rate convective cooling - скорость конвективного охлаждения rate convective-heat transfer - коэффициент или скорость конвективной теплопередачи rate cooling - скорость охлаждения rate corrosion - скорость коррозии rate critical application - минимальная интенсивность подачи (огне-тушащего вещества, необходимая для полной шквидации пожара) rate decay - скорость распада rate decomposition - скорость разложения rate deflagration - скорость дефлаграции rate delivery - подача (производительность) насоса rate diffusion - скорость диффузии rate discharge - скорость истечения или разряда; расход (жидкости, газа); пропускная способность (эвакуационного пути) rate drainage - скорость стекания воды из пены, интенсивность осушения пены rate emission - интенсивность испускания (эмиссии); излучательная способность rate exit discharge - пропускная способность выхода rate feed - скорость подачи rate fire fatality - процент случаев со смертельным исходом или коэффициент смертности от общего числа пострадавших при пожаре rate fire survival - процент выживших или коэффициент выживаемости от общего числа пострадавших при пожаре rate flame spread - скорость распространения пламени rate foam application - интенсивность подачи пены; скорость накопления пенного слоя rate foam burn-back - скорость разрушения пены (под воздействием огня) rate fuel burn - быстрота выгорания топлива (горючего) rate fuel (consumption) - расход топлива (горючего) rate fuel-regression - скорость разложения топлива (горючегр) rate gas production - скорость газообразования rate heat - скорость или степень нагрева; тепловая мощность; удельный расход тепла rate heat-exchange - скорость теплообмена rate heating - скорость нагрева; удельный тепловой поток rate heat input - скорость подвода тепла rate heat-liberation - скорость тепловыделения rate heat rejection - скорость отвода (излучения) тепла rate heat-release - теплонлпряжен-ность, геплопроизводительность; скорость выделения тепла rate heat-shield surface recession - скорость уноса массы с теплозащитной поверхности rate heat-transfer - коэффициент теплопередачи; удельный тепловой поток; скорость или интенсивность теплопередачи rate incoming - темп поступления (напр. сигналов тревоги) rate infiltration - скорость пропитки rate ionization - скорость ионизации rate load - величина нагрузки mass - массовый расход rate mass ablation - массовая скорость абляции rate mass burning - массовая скорость горения rate mass-flow - массовый расход (жидкости, газа) rate mass-loss constant - линейная скорость абляции (уноса массы) rate mass-transfer - скорость мас-сообмена rate material ablation - скорость абляции (уноса массы) материала rate normal lapse - нормальный градиент rate occupancy - показатель заселенности; плотность заселения rate outgassing - скорость дегазации rate oxidation - скорость окисления rate polymerization - скорость полимеризации rate powder application - скорость подачи порошка rate propagation spread - скорость распространения пламени rate pyrolysis - скорость пиролиза rate radiation - интенсивность излучения rate shear - скорость сдвига rate smoke release - скорость или интенсивность дымообразования (выделения дыма) rate specified - номинальный или расчетный показатель rate spread - of the pyrolysis front скорость распространения фронта пиролиза rate steam - расход пара rate surface ablation - скорость поверхностной абляции (уноса массы) rate surface heat - скорость нагрева поверхности rate surface recession - скорость поверхностной абляции (уноса массы) rate survival - вероятность безотказной работы rate thermal emissivity - скорость теплоизлучения rate throughput - пропускная способность; скорость пропускания (материала); расход (жидкости, газа) rate transfer - коэффициент массо-обмена; скорость теплопередачи rate vaporization - скорость или интенсивность испарения rate volume flow - объемный расход (жидкости, газа) rate water - расход воды rate weight flow - массовый (секундный) расход (жидкости, газа)

    Англо-русский пожарно-технический словарь > rate

  • 10 flow

    течение; поток; истечение; текучесть; технологический процесс; расход (жидкости, газа); течь; протекать; истекать flow of light поток света flow adiabatic - адиабатное течение flow air - воздушный поток flow axisymmetric - асесимметричное течение или поток flow back - проход воды обратно в систему водоснабжения (через кран или клапан) flow boundary-layer - течение в пограничном слое flow constant - установившееся течение; постоянный расход flow eddying - турбулентный поток flow estimated - приблизительная производительность (напр. нефтяной скважины) flow expanding (expansive) - расширяющийся поток flow fire - расход воды для тушения пожара; пожарная струя flow fixed rate - течение с постоянным расходом flow fluid - течение или поток жидкости; расход жидкости или газа flow free - безнапорный поток; безнапорное (свободное) течение flow free-stream - невозмущенный поток flow fictional - течение с внутренним трением; течение вязкой жидкости flow frictionless - течение без внутреннего трения; течение идеальной (невязкой) жидкости flow gas - течение ила поток газа; расход газа flow gravity - течение самотеком flow head - напор flow heat - тепловой поток flow highly turbulent - сильнотур-булизированный поток flow high-Reynolds number - течение с большим числом Re flow high-speed - высокоскоростной поток flow hydraulic - гидравлическое течение flow ideal - поток идеальной (невязкой) жидкости flow incident - набегающий поток flow incompressible - течение несжимаемой жидкости flow input - входящий поток flow inverse (inverted) - обратный поток flow inviscid - поток идеальной (невязкой) жидкости flow jet - струйное течение; реактивная струя flow laminar - ламинарный поток или течение flow leakage - просачивающийся поток; утечка, течь flow liquid - течение или поток жидкости flow mass - массовый расход (газа, топлива) flow maximum recorded - максимальный зарегистрированный расход (жидкости, газа) flow near-steady - квазистационарное течение flow noncontinuous - прерывистый поток flow nonperfect - поток неидеальной жидкости flow nonstationary - неустановившееся течение flow nonsteady(-state) - неустановившееся течение или поток flow nonuniform - неравномерное течение или поток flow open - свободное фонтанирование (напр. скважины) flow parallel - ламинарное течение flow permanent - установившееся течение flow pipe - поток или течение в тпубопроводе flow pseudostationary (quasi-steady) - квазиустановившееся течение flow radiation - поток излучения flow retarded - замедленное течение; заторможенный поток flow return (reversed) - противоток; обратное (встречное) течение flow rotational - вихревое течение flow specific - удельный расход flow steady(-state) - установившееся (стационарное) течение или поток; постоянный расход flow streamline(d) - ламинарный поток flow thermal - тепловой поток flow three-dimensional - пространственный (трехмерный) поток flow time-dependent - неустановившееся течение flow total - полный (суммарный) расход flow transient - неустановившийся поток или течение flow transition - переходный режим течения flow turbulent - турбулентное течение или поток flow two-dimensional - плоское (двухмерное) течение или лоток flow uniform - равномерное течение или поток flow unsteady - неустановившееся течение или поток flow variable (varied, varying) - поток с переменной скоростью течения; неустановившееся течение flow viscous - течение вязкой жидкости flow volume(tric) - объемный расход (жидкости, газа) flow weight - массовый расход (жидкости, газа)

    Англо-русский пожарно-технический словарь > flow

  • 11 self contained cable

    1. кабель с каналом в токоведущей жиле

     

    кабель с каналом в токоведущей жиле

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    кабель с центральным маслопроводящим каналом
    кабель в собственной оболочке

    Кабель, в котором создающая давление жидкость находится в пределах металлической оболочки, наложенной в процессе изготовления
    [СТ МЭК 50(461)-84]
    [ Источник]


    Искусственное охлаждение маслонаполненных кабелей с центральным маслопроводящим каналом

    Для преодоления жестких ограничений по токовой нагрузочной способности кабелей, проложенных в земле, может применяться искусственное охлаждение кабелей.
    Возможны следующие варианты искусственного охлаждения:

    • внешнее охлаждение с помощью труб. При этом обеспечивается протекание воды по пластмассовым трубам, проложенным вблизи от кабеля. Общее термическое сопротивление кабеля в схеме замещения шунтируется термическим сопротивлением между кабелем и охлаждающей водой. Температура воды увеличивается при движении по трубам, и, таким образом, имеется ограничение по длине кабеля, который может быть охлажден таким способом. Эффективное термическое  coпpотивление содержит составляющие: сопротивление грунта между кабелем и трубами, сопротивление стенки трубы, термическое сопротивление между кабелем и охлаждающей водой и термическое сопротивление самого кабеля. Такая система искусственного охлаждения относительно проста и имеет ряд преимуществ по механическим характеристикам для кабелей, проложенных непосредственно в земле. Охлаждение длинных КЛ производится путем применения труб охлаждения большого диаметра, например диаметром 150 мм. Такие трубы должны быть гибкими и должны иметь армированные стенки с тем, чтобы выдерживать давление почвы в том случае, когда они не заполнены водой под давлением;

     5131

    Внешнее охлаждение кабелей с помощью трубс водой (обозначены прямой и обратный потоки воды)

    Т - трубы с водой;
    К - кабель;
    1 - обратный трубопровод;
    2 - прямой трубопровод

    • поверхностное охлаждение.
      Система более интенсивного водяного охлаждения, чем при использовании труб внешнего охлаждения, выполнена следующим образом. Кабель размещается в жесткой пластмассовой трубе диаметром около 250 мм, применяется принудительная циркуляция воды через трубу. Такой способ искусственного охлаждения дороже, чем предыдущий, но при этом для кабеля с жилой 2000 мм2 можно достичь токовой нагрузки свыше 3200 А.

    Способ поверхностного искусственного охлаждения также известен как способ непосредственного охлаждения оболочки (в отличие от внешнего охлаждения с помощью труб). При непосредственном охлаждении кабелей возникают проблемы, связанные с возможным перемещением кабелей в трубопроводе из-за электромеханических усилий. Из-за значительной стоимости схем поверхностного охлаждения схема внешнего охлаждения является более предпочтительной, и установки поверхностного непосредственного охлаждения пpименяются лишь в тех случаях, когда требуемая нагрузочная способность кабелей не может быть достигнута другим способом. Дополнительные проблемы в схемах поверхностного искусственного охлаждения связаны с высокой температурой в среднем сечении соединительных муфт, которые имеют повышенные термические сопротивления изоляции. Для схем естественного охлаждения кабелей обычно такой проблемы не возникает, так как имеется возможность увеличить расстояние между опорами муфт. При температуре жилы кабеля 85° С, несмотря на принятые меры, температура в соединительных муфтах может быть значительно выше;

    5132 

     Поверхностное или непосредственное искусственное охлаждение кабелей, проложенных в трубах

    • внутреннее охлаждение.
      При этом циркуляция охлаждающей жидкости обеспечивается в каждой жиле кабеля. Охлаждающей жидкостью может быть: изоляционное масло, которое является частью масла в бумажно-масляной изоляции кабеля, вода, которая имеет большую способность поглощать теплоту, чем масло. Однако вода должна быть включена в водонепроницаемые трубки внутри канала в жиле кабеля, как показано на рисунке

     5133

    Поперечное сечение кабеля на напряжение 110 кВ с внутренним водяным охла ждением:

    1 - канал для воды диаметром d;
    2 - водонепроницаемая трубка;
    3 - токопроводящая жила диаметром dж, скрученная из отдельных проволок;
    4 - полупроводящая бумага;
    5 - изоляция;
    6 - экранирующие ленты;
    7 - гофрированная алюминиевая оболочка;
    8 - антикоррозийная защита;
    9 - оболочка из поливинилхлорида

     Такую схему можно применить для кабелей со сплошной экструдированной изоляцией, которые применяются для соединения генераторов при относительно низком напряжении. Напряжение на охлаждающей жидкости должно снижаться до потенциала земли прежде, чем она попадет в перекачивающий насос. В схемах с водяным охлаждением применяют специальные концевые устройства для кабелей, внутри которых охлаждающая жидкость протекает через спиральный канал, обеспечивающий необходимую электрическую изоляцию при рабочем напряжении КЛ. Электрическое сопротивление воды снижается в процессе эксплуатации; опыт показывает, что удельное электрическое сопротивление rв = 200 кОм см является приемлемым. Поэтому для кабелей с внутренним искусственным охлаждением требуется применение регенерирующих установок,  которые  повышают  rв до 200 кОм см  при уменьшении сопротивления до 20 кОм см. Высокое значение rв является существенным для сохранения активных потерь в столбе воды на требуемом уровне. Основное преимущество системы внутреннего искусственного охлаждения заключается в том, что она позволяет удалять теплоту непосредственно от главного источника - жилы кабеля. С другой стороны, возможный объемный расход охлаждающей жидкости ограничивается размером канала в жиле кабеля, а повышение  температуры жидкости на определенной длине кабеля будет значительным.

    Можно использовать фторорганические жидкости для охлаждения по каналу жилы кабеля, например фреон - 12. Жидкий хладагент абсорбирует теплоту, испаряется и поступает в теплообменник. Этот способ находится еще в стадии разработки, и необходимость в таких схемах для кабелей пока еще определяется. Преимуществом такого испарительного охлаждения является установление естественного конвективного потока жидкости; при этом не требуются насосы.

    [ http://www.eti.su/articles/kabel-i-provod/kabel-i-provod_600.html]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > self contained cable

  • 12 self-contained cable

    1. кабель с каналом в токоведущей жиле

     

    кабель с каналом в токоведущей жиле

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    кабель с центральным маслопроводящим каналом
    кабель в собственной оболочке

    Кабель, в котором создающая давление жидкость находится в пределах металлической оболочки, наложенной в процессе изготовления
    [СТ МЭК 50(461)-84]
    [ Источник]


    Искусственное охлаждение маслонаполненных кабелей с центральным маслопроводящим каналом

    Для преодоления жестких ограничений по токовой нагрузочной способности кабелей, проложенных в земле, может применяться искусственное охлаждение кабелей.
    Возможны следующие варианты искусственного охлаждения:

    • внешнее охлаждение с помощью труб. При этом обеспечивается протекание воды по пластмассовым трубам, проложенным вблизи от кабеля. Общее термическое сопротивление кабеля в схеме замещения шунтируется термическим сопротивлением между кабелем и охлаждающей водой. Температура воды увеличивается при движении по трубам, и, таким образом, имеется ограничение по длине кабеля, который может быть охлажден таким способом. Эффективное термическое  coпpотивление содержит составляющие: сопротивление грунта между кабелем и трубами, сопротивление стенки трубы, термическое сопротивление между кабелем и охлаждающей водой и термическое сопротивление самого кабеля. Такая система искусственного охлаждения относительно проста и имеет ряд преимуществ по механическим характеристикам для кабелей, проложенных непосредственно в земле. Охлаждение длинных КЛ производится путем применения труб охлаждения большого диаметра, например диаметром 150 мм. Такие трубы должны быть гибкими и должны иметь армированные стенки с тем, чтобы выдерживать давление почвы в том случае, когда они не заполнены водой под давлением;

     5131

    Внешнее охлаждение кабелей с помощью трубс водой (обозначены прямой и обратный потоки воды)

    Т - трубы с водой;
    К - кабель;
    1 - обратный трубопровод;
    2 - прямой трубопровод

    • поверхностное охлаждение.
      Система более интенсивного водяного охлаждения, чем при использовании труб внешнего охлаждения, выполнена следующим образом. Кабель размещается в жесткой пластмассовой трубе диаметром около 250 мм, применяется принудительная циркуляция воды через трубу. Такой способ искусственного охлаждения дороже, чем предыдущий, но при этом для кабеля с жилой 2000 мм2 можно достичь токовой нагрузки свыше 3200 А.

    Способ поверхностного искусственного охлаждения также известен как способ непосредственного охлаждения оболочки (в отличие от внешнего охлаждения с помощью труб). При непосредственном охлаждении кабелей возникают проблемы, связанные с возможным перемещением кабелей в трубопроводе из-за электромеханических усилий. Из-за значительной стоимости схем поверхностного охлаждения схема внешнего охлаждения является более предпочтительной, и установки поверхностного непосредственного охлаждения пpименяются лишь в тех случаях, когда требуемая нагрузочная способность кабелей не может быть достигнута другим способом. Дополнительные проблемы в схемах поверхностного искусственного охлаждения связаны с высокой температурой в среднем сечении соединительных муфт, которые имеют повышенные термические сопротивления изоляции. Для схем естественного охлаждения кабелей обычно такой проблемы не возникает, так как имеется возможность увеличить расстояние между опорами муфт. При температуре жилы кабеля 85° С, несмотря на принятые меры, температура в соединительных муфтах может быть значительно выше;

    5132 

     Поверхностное или непосредственное искусственное охлаждение кабелей, проложенных в трубах

    • внутреннее охлаждение.
      При этом циркуляция охлаждающей жидкости обеспечивается в каждой жиле кабеля. Охлаждающей жидкостью может быть: изоляционное масло, которое является частью масла в бумажно-масляной изоляции кабеля, вода, которая имеет большую способность поглощать теплоту, чем масло. Однако вода должна быть включена в водонепроницаемые трубки внутри канала в жиле кабеля, как показано на рисунке

     5133

    Поперечное сечение кабеля на напряжение 110 кВ с внутренним водяным охла ждением:

    1 - канал для воды диаметром d;
    2 - водонепроницаемая трубка;
    3 - токопроводящая жила диаметром dж, скрученная из отдельных проволок;
    4 - полупроводящая бумага;
    5 - изоляция;
    6 - экранирующие ленты;
    7 - гофрированная алюминиевая оболочка;
    8 - антикоррозийная защита;
    9 - оболочка из поливинилхлорида

     Такую схему можно применить для кабелей со сплошной экструдированной изоляцией, которые применяются для соединения генераторов при относительно низком напряжении. Напряжение на охлаждающей жидкости должно снижаться до потенциала земли прежде, чем она попадет в перекачивающий насос. В схемах с водяным охлаждением применяют специальные концевые устройства для кабелей, внутри которых охлаждающая жидкость протекает через спиральный канал, обеспечивающий необходимую электрическую изоляцию при рабочем напряжении КЛ. Электрическое сопротивление воды снижается в процессе эксплуатации; опыт показывает, что удельное электрическое сопротивление rв = 200 кОм см является приемлемым. Поэтому для кабелей с внутренним искусственным охлаждением требуется применение регенерирующих установок,  которые  повышают  rв до 200 кОм см  при уменьшении сопротивления до 20 кОм см. Высокое значение rв является существенным для сохранения активных потерь в столбе воды на требуемом уровне. Основное преимущество системы внутреннего искусственного охлаждения заключается в том, что она позволяет удалять теплоту непосредственно от главного источника - жилы кабеля. С другой стороны, возможный объемный расход охлаждающей жидкости ограничивается размером канала в жиле кабеля, а повышение  температуры жидкости на определенной длине кабеля будет значительным.

    Можно использовать фторорганические жидкости для охлаждения по каналу жилы кабеля, например фреон - 12. Жидкий хладагент абсорбирует теплоту, испаряется и поступает в теплообменник. Этот способ находится еще в стадии разработки, и необходимость в таких схемах для кабелей пока еще определяется. Преимуществом такого испарительного охлаждения является установление естественного конвективного потока жидкости; при этом не требуются насосы.

    [ http://www.eti.su/articles/kabel-i-provod/kabel-i-provod_600.html]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > self-contained cable

  • 13 self-contained pressure cable

    1. кабель с каналом в токоведущей жиле

     

    кабель с каналом в токоведущей жиле

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    кабель с центральным маслопроводящим каналом
    кабель в собственной оболочке

    Кабель, в котором создающая давление жидкость находится в пределах металлической оболочки, наложенной в процессе изготовления
    [СТ МЭК 50(461)-84]
    [ Источник]


    Искусственное охлаждение маслонаполненных кабелей с центральным маслопроводящим каналом

    Для преодоления жестких ограничений по токовой нагрузочной способности кабелей, проложенных в земле, может применяться искусственное охлаждение кабелей.
    Возможны следующие варианты искусственного охлаждения:

    • внешнее охлаждение с помощью труб. При этом обеспечивается протекание воды по пластмассовым трубам, проложенным вблизи от кабеля. Общее термическое сопротивление кабеля в схеме замещения шунтируется термическим сопротивлением между кабелем и охлаждающей водой. Температура воды увеличивается при движении по трубам, и, таким образом, имеется ограничение по длине кабеля, который может быть охлажден таким способом. Эффективное термическое  coпpотивление содержит составляющие: сопротивление грунта между кабелем и трубами, сопротивление стенки трубы, термическое сопротивление между кабелем и охлаждающей водой и термическое сопротивление самого кабеля. Такая система искусственного охлаждения относительно проста и имеет ряд преимуществ по механическим характеристикам для кабелей, проложенных непосредственно в земле. Охлаждение длинных КЛ производится путем применения труб охлаждения большого диаметра, например диаметром 150 мм. Такие трубы должны быть гибкими и должны иметь армированные стенки с тем, чтобы выдерживать давление почвы в том случае, когда они не заполнены водой под давлением;

     5131

    Внешнее охлаждение кабелей с помощью трубс водой (обозначены прямой и обратный потоки воды)

    Т - трубы с водой;
    К - кабель;
    1 - обратный трубопровод;
    2 - прямой трубопровод

    • поверхностное охлаждение.
      Система более интенсивного водяного охлаждения, чем при использовании труб внешнего охлаждения, выполнена следующим образом. Кабель размещается в жесткой пластмассовой трубе диаметром около 250 мм, применяется принудительная циркуляция воды через трубу. Такой способ искусственного охлаждения дороже, чем предыдущий, но при этом для кабеля с жилой 2000 мм2 можно достичь токовой нагрузки свыше 3200 А.

    Способ поверхностного искусственного охлаждения также известен как способ непосредственного охлаждения оболочки (в отличие от внешнего охлаждения с помощью труб). При непосредственном охлаждении кабелей возникают проблемы, связанные с возможным перемещением кабелей в трубопроводе из-за электромеханических усилий. Из-за значительной стоимости схем поверхностного охлаждения схема внешнего охлаждения является более предпочтительной, и установки поверхностного непосредственного охлаждения пpименяются лишь в тех случаях, когда требуемая нагрузочная способность кабелей не может быть достигнута другим способом. Дополнительные проблемы в схемах поверхностного искусственного охлаждения связаны с высокой температурой в среднем сечении соединительных муфт, которые имеют повышенные термические сопротивления изоляции. Для схем естественного охлаждения кабелей обычно такой проблемы не возникает, так как имеется возможность увеличить расстояние между опорами муфт. При температуре жилы кабеля 85° С, несмотря на принятые меры, температура в соединительных муфтах может быть значительно выше;

    5132 

     Поверхностное или непосредственное искусственное охлаждение кабелей, проложенных в трубах

    • внутреннее охлаждение.
      При этом циркуляция охлаждающей жидкости обеспечивается в каждой жиле кабеля. Охлаждающей жидкостью может быть: изоляционное масло, которое является частью масла в бумажно-масляной изоляции кабеля, вода, которая имеет большую способность поглощать теплоту, чем масло. Однако вода должна быть включена в водонепроницаемые трубки внутри канала в жиле кабеля, как показано на рисунке

     5133

    Поперечное сечение кабеля на напряжение 110 кВ с внутренним водяным охла ждением:

    1 - канал для воды диаметром d;
    2 - водонепроницаемая трубка;
    3 - токопроводящая жила диаметром dж, скрученная из отдельных проволок;
    4 - полупроводящая бумага;
    5 - изоляция;
    6 - экранирующие ленты;
    7 - гофрированная алюминиевая оболочка;
    8 - антикоррозийная защита;
    9 - оболочка из поливинилхлорида

     Такую схему можно применить для кабелей со сплошной экструдированной изоляцией, которые применяются для соединения генераторов при относительно низком напряжении. Напряжение на охлаждающей жидкости должно снижаться до потенциала земли прежде, чем она попадет в перекачивающий насос. В схемах с водяным охлаждением применяют специальные концевые устройства для кабелей, внутри которых охлаждающая жидкость протекает через спиральный канал, обеспечивающий необходимую электрическую изоляцию при рабочем напряжении КЛ. Электрическое сопротивление воды снижается в процессе эксплуатации; опыт показывает, что удельное электрическое сопротивление rв = 200 кОм см является приемлемым. Поэтому для кабелей с внутренним искусственным охлаждением требуется применение регенерирующих установок,  которые  повышают  rв до 200 кОм см  при уменьшении сопротивления до 20 кОм см. Высокое значение rв является существенным для сохранения активных потерь в столбе воды на требуемом уровне. Основное преимущество системы внутреннего искусственного охлаждения заключается в том, что она позволяет удалять теплоту непосредственно от главного источника - жилы кабеля. С другой стороны, возможный объемный расход охлаждающей жидкости ограничивается размером канала в жиле кабеля, а повышение  температуры жидкости на определенной длине кабеля будет значительным.

    Можно использовать фторорганические жидкости для охлаждения по каналу жилы кабеля, например фреон - 12. Жидкий хладагент абсорбирует теплоту, испаряется и поступает в теплообменник. Этот способ находится еще в стадии разработки, и необходимость в таких схемах для кабелей пока еще определяется. Преимуществом такого испарительного охлаждения является установление естественного конвективного потока жидкости; при этом не требуются насосы.

    [ http://www.eti.su/articles/kabel-i-provod/kabel-i-provod_600.html]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > self-contained pressure cable

См. также в других словарях:

  • объемный расход воды — Объем воды, протекающий через живое сечение потока в единицу времени. [ГОСТ 19179 73] Тематики гидрология суши Обобщающие термины гидрометрия EN water discharge DE Durchfluss FR débit …   Справочник технического переводчика

  • РАСХОД ВОДЫ И ЕГО ИЗМЕРЕНИЕ — количество воды, протекающей в ручье, реке или подаваемой в рыбоводные пруды водоснабжающим источником из головного пруда, ключа, водохранилища в определенный промежуток времени (в секунду, час, сутки). Колебания расхода зависят от режима… …   Прудовое рыбоводство

  • расход — 3.11 расход: Объем воздуха, проходящий через терморегулятор в единицу времени. Источник: ГОСТ Р ЕН 257 2004: Термостаты (терморегуляторы) механические для га …   Словарь-справочник терминов нормативно-технической документации

  • Расход — Расход: Расходы  затраты, уменьшение экономических выгод в результате выбытия денежных средств, иного имущества Количество жидкости, газа или сыпучих материалов, протекающих через поперечное сечение потока в единицу времени; Расход… …   Википедия

  • номинальный расход — 3.7.1 номинальный расход: Расход газа, указанный изготовителем, приведенный к стандартным условиям. Источник: ГОСТ Р 52057 2003: Краны для газовых аппаратов. Общие технические требования и методы испытаний …   Словарь-справочник терминов нормативно-технической документации

  • гидрометрический лоток типа Вентури — Гидрометрический лоток, состоящий из трех секций, в котором объемный расход воды вычисляют по разности двух измеренных уровней воды во входной и выходной секциях. [ГОСТ Р 51657 1 2000] Тематики водоучет …   Справочник технического переводчика

  • 1: — Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения — Терминология ГОСТ 15528 86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа: 26. Акустический преобразователь расхода D. Akustischer Durch flußgeber E. Acoustic flow transducer F …   Словарь-справочник терминов нормативно-технической документации

  • номинальный — 3.7 номинальный: Слово, используемое проектировщиком или производителем в таких словосочетаниях, как номинальная мощность, номинальное давление, номинальная температура и номинальная скорость. Примечание Следует избегать использования этого слова …   Словарь-справочник терминов нормативно-технической документации

  • определение — 2.7 определение: Процесс выполнения серии операций, регламентированных в документе на метод испытаний, в результате выполнения которых получают единичное значение. Источник …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 51847-2001: Аппараты водонагревательные проточные газовые бытовые типа А и С. Общие технические условия — Терминология ГОСТ Р 51847 2001: Аппараты водонагревательные проточные газовые бытовые типа А и С. Общие технические условия оригинал документа: 3.2 аппарат с пропорциональной подачей газа: Аппарат, в котором расход газа изменяется пропорционально …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»